MathDB
Rational product group under the operation (a,b)*(c,d) =(ac,ad+b)

Source:

November 28, 2019
group theoryabstract algebra

Problem Statement

Define the operation (a,b)(c,d)=(ac,ad+b). (a,b)\circ (c,d) =(ac,ad+b).
a) Prove that (Q{0}×Q,) \left( \mathbb{Q}\setminus\{ 0\}\times\mathbb{Q} ,\circ \right) is a group. b) Let H H be an infinite subgroup of (Q{0}×Q,) \left( \mathbb{Q}\setminus\{ 0\}\times\mathbb{Q} ,\circ \right) that is cyclic and doesn't contain any element of the form (1,q), (1,q) , where q q is a nonzero rational. Show that there exist two rational numbers a,b a,b such that H={(an,b1an1a)nZ} H=\left\{ \left.\left( a^n, b\cdot\frac{1-a^n}{1-a} \right)\right| n\in\mathbb{Z} \right\}