MathDB
Romania District Olympiad 2008 - Grade XI

Source:

April 10, 2011
linear algebramatrixlinear algebra unsolved

Problem Statement

Let A,BMn(R)A,B\in \mathcal{M}_n(\mathbb{R}). Prove that rank A+rank Bn\text{rank}\ A+\text{rank}\ B\le n if and only if there exists an invertible matrix XMn(R)X\in \mathcal{M}_n(\mathbb{R}) such that AXB=OnAXB=O_n.