MathDB
Uniquely Determining A Triangle

Source:

February 15, 2009
circumcircle

Problem Statement

Which one of the following combinations of given parts does not determine the indicated triangle? <spanclass=latexbold>(A)</span> base angle and vertex angle; isosceles triangle <span class='latex-bold'>(A)</span>\ \text{base angle and vertex angle; isosceles triangle} <spanclass=latexbold>(B)</span> vertex angle and the base; isosceles triangle <span class='latex-bold'>(B)</span>\ \text{vertex angle and the base; isosceles triangle} <spanclass=latexbold>(C)</span> the radius of the circumscribed circle; equilateral triangle <span class='latex-bold'>(C)</span>\ \text{the radius of the circumscribed circle; equilateral triangle} <spanclass=latexbold>(D)</span> one arm and the radius of the inscribed circle; right triangle <span class='latex-bold'>(D)</span>\ \text{one arm and the radius of the inscribed circle; right triangle} <spanclass=latexbold>(E)</span> two angles and a side opposite one of them; scalene triangle <span class='latex-bold'>(E)</span>\ \text{two angles and a side opposite one of them; scalene triangle}