MathDB
Interesting thing related to a kind of Fourier sum

Source: Bogdan Stan 2011

October 7, 2019
functionratioinductionalgebra

Problem Statement

Let be a natural number n, n, two n-tuplets \text{n-tuplets} of real numbers a:=(a1,a2,,an),b:=(b1,b2,,bn), a:=\left( a_1,a_2,\ldots, a_n \right) , b:=\left( b_1,b_2,\ldots, b_n \right) , and the function f:RR,f(x)=i=1naicos(bix) f:\mathbb{R}\longrightarrow\mathbb{R}, f(x)=\sum_{i=1}^na_i\cos \left( b_ix \right) . Prove that if the numbers of b b are all positive and pairwise distinct,
a) then, f0 f\ge 0 implies that the numbers of a a are all equal. b) if the numbers of a a are all nonzero and f f is periodic, then the ratio of any two numbers of b b is rational.
Marin Tolosi