MathDB
Ineq with n variables (IMO SL 1987-P15)

Source:

August 19, 2010
inequalitiespigeonhole principlelinear algebrainequality systemIMO ShortlistIMO 1987IMO

Problem Statement

Let x1,x2,,xnx_1,x_2,\ldots,x_n be real numbers satisfying x12+x22++xn2=1x_1^2+x_2^2+\ldots+x_n^2=1. Prove that for every integer k2k\ge2 there are integers a1,a2,,ana_1,a_2,\ldots,a_n, not all zero, such that aik1|a_i|\le k-1 for all ii, and a1x1+a2x2++anxn(k1)nkn1|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}. (IMO Problem 3)
Proposed by Germany, FR