MathDB
CIIM 2019 Problem 2

Source:

August 30, 2021
CIIM

Problem Statement

Consider the set {0,1}n={X=(x1,x2,,xn):xi{0,1},1in}.\{0, 1\}^n = \{X = (x_1, x_2,\dots , x_n) : x_i \in \{0, 1\}, 1 \leq i \leq n\}. We say that X>YX > Y if XYX \neq Y and the following nn inequalities are satisfy x1y1,x1+x2y1+y2,,x1+x2++xny1+y2++yn.x_1 \geq y_1, x_1 + x_2 \geq y_1 + y_2,\dots , x_1 + x_2 + \cdots + x_n \geq y_1 + y_2 + \cdots + y_n. We define a chain of length kk as a subset Z1,,Zk{0,1}n{Z_1,\dots , Z_k} \subseteq \{0, 1\}^n of distinct elements such that Z1>Z2>>Zk.Z_1 > Z_2 > \cdots > Z_k. Determine the lenght of longest chain in {0,1}n\{0,1\}^n.