MathDB
Inifinitely Many Increasing Functions

Source: Romanian District Olympiad 2018 - Grade IX - Problem 4

March 10, 2018
functionromania

Problem Statement

Let f:RRf:\mathbb{R} \to\mathbb{R} be a function. For every aZa\in\mathbb{Z} consider the function fa:RRf_a : \mathbb{R} \to\mathbb{R}, fa(x)=(xa)f(x)f_a(x) = (x - a)f(x). Prove that if there exist infinitely many values aZa\in\mathbb{Z} for which the functions faf_a are increasing, then the function ff is monotonic.