In a regular pyramid with top point T and equilateral base ABC, let P, Q, R, S be the midpoints of [AB], [BC], [CT] and [TA], respectively. If \left|AB\right| \equal{} 6 and the altitude of pyramid is equal to 215, then area of PQRS will be<spanclass=′latex−bold′>(A)</span>415<spanclass=′latex−bold′>(B)</span>82<spanclass=′latex−bold′>(C)</span>83<spanclass=′latex−bold′>(D)</span>65<spanclass=′latex−bold′>(E)</span>92