Given: x>0,y>0,x>y and z\not \equal{} 0. The inequality which is not always correct is:
(A)\ x \plus{} z > y \plus{} z \qquad(B)\ x \minus{} z > y \minus{} z \qquad(C)\ xz > yz
<spanclass=′latex−bold′>(D)</span>z2x>z2y<spanclass=′latex−bold′>(E)</span>xz2>yz2