MathDB
ax+by=n, odd no. of non-negative integer solutions (x, y)

Source: INAMO Shortlist 2015 N5

May 14, 2019
number theoryDiophantine equationIntegers

Problem Statement

Given a prime number n5n \ge 5. Prove that for any natural number an2a \le \frac{n}{2} , we can search for natural number bn2b \le \frac{n}{2} so the number of non-negative integer solutions (x,y)(x, y) of the equation ax+by=nax+by=n to be odd*.
Clarification: * For example when n=7,a=3n = 7, a = 3, we can chooseb=1 b = 1 so that there number of solutions og 3x+y=73x + y = 7 to be 33 (odd), namely: (0,7),(1,4),(2,1)(0, 7), (1, 4), (2, 1)