MathDB
Find all real numbers c - ILL 1990 CZS5

Source:

September 19, 2010
inequalitiesalgebracombinatorial inequalitypermutationIMO ShortlistIMO Longlist

Problem Statement

For any permutation pp of set {1,2,,n}\{1, 2, \ldots, n\}, define d(p)=p(1)1+p(2)2++p(n)nd(p) = |p(1) - 1| + |p(2) - 2| + \ldots + |p(n) - n|. Denoted by i(p)i(p) the number of integer pairs (i,j)(i, j) in permutation pp such that 1<jn1 \leqq < j \leq n and p(i)>p(j)p(i) > p(j). Find all the real numbers cc, such that the inequality i(p)cd(p)i(p) \leq c \cdot d(p) holds for any positive integer nn and any permutation p.p.