MathDB
S={1,2,...,n}; T_{f}(j)=1,0; Determine sum(sum(T_f(j))

Source: Indian IMO Training Camp 2007-ST 1 P3

March 5, 2011
functionprobabilityexpected valuecombinatorics unsolvedcombinatorics

Problem Statement

Let X\mathbb X be the set of all bijective functions from the set S={1,2,,n}S=\{1,2,\cdots, n\} to itself. For each fX,f\in \mathbb X, define Tf(j)={1,   if  f(12)(j)=j,0,   otherwiseT_f(j)=\left\{\begin{aligned} 1, \ \ \ & \text{if} \ \ f^{(12)}(j)=j,\\ 0, \ \ \ & \text{otherwise}\end{aligned}\right. Determine fXj=1nTf(j).\sum_{f\in\mathbb X}\sum_{j=1}^nT_{f}(j). (Here f(k)(x)=f(f(k1)(x))f^{(k)}(x)=f(f^{(k-1)}(x)) for all k2.k\geq 2.)