MathDB
Which Relation is Deduced Correctly?

Source: 1966 AHSME #40

August 31, 2011
AMC

Problem Statement

[asy]draw(Circle((0,0), 1)); dot((0,0)); label("OO", (0,0), S); label("AA", (-1,0), W); label("BB", (1,0), E); label("aa", (-0.5,0), S); draw((-1,-1.25)--(-1,1.25)); draw((1,-1.25)--(1,1.25)); draw((-1,0)--(1,0)); draw((-1,0)--(-1,0)+2.3*dir(30)); label("CC", (-1,0)+2.3*dir(30), E); label("DD", (-1,0)+1.8*dir(30), N); dot((-1,0)+.4*dir(30)); label("EE", (-1,0)+.4*dir(30), N); [/asy] In this figure ABAB is a diameter of a circle, centered at OO, with radius aa. A chord ADAD is drawn and extended to meet the tangent to the circle at BB in point CC. Point EE is taken on ACAC so that AE=DCAE=DC. Denoting the distances of EE from the tangent through AA and from the diameter ABAB by xx and yy, respectively, we can deduce the relation:
(A) y2=x32ax(B) y2=x32a+x(C) y4=x22x(D) x2=y22ax(E) x2=y22a+x\text{(A)}\ y^2=\dfrac{x^3}{2a-x} \qquad \text{(B)}\ y^2=\frac{x^3}{2a+x}\qquad \text{(C)}\ y^4=\frac{x^2}{2-x}\qquad\\ \text{(D)}\ x^2=\dfrac{y^2}{2a-x}\qquad \text{(E)}\ x^2=\frac{y^2}{2a+x}