MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2017 Moldova Team Selection Test
9
P^2(1) \geq 2b_{n-1} [Moldova TST 2017, D3, P1]
P^2(1) \geq 2b_{n-1} [Moldova TST 2017, D3, P1]
Source: Moldova TST 2017, Day 3, Problem 1
March 20, 2017
algebra
Problem Statement
Let
P
(
X
)
=
a
0
X
n
+
a
1
X
n
−
1
+
⋯
+
a
n
P(X)=a_{0}X^{n}+a_{1}X^{n-1}+\cdots+a_{n}
P
(
X
)
=
a
0
X
n
+
a
1
X
n
−
1
+
⋯
+
a
n
be a polynomial with real coefficients such that
a
0
>
0
a_{0}>0
a
0
>
0
and
a
n
≥
a
i
≥
0
,
a_{n}\geq a_{i}\geq 0,
a
n
≥
a
i
≥
0
,
for all
i
=
0
,
1
,
2
,
…
,
n
−
1.
i=0,1,2,\ldots,n-1.
i
=
0
,
1
,
2
,
…
,
n
−
1.
Prove that if
P
2
(
X
)
=
b
0
X
2
n
+
b
1
X
2
n
−
1
+
⋯
+
b
n
−
1
X
n
+
1
+
⋯
+
b
2
n
,
P^{2}(X)=b_{0}X^{2n}+b_{1}X^{2n-1}+\cdots+b_{n-1}X^{n+1}+\cdots+b_{2n},
P
2
(
X
)
=
b
0
X
2
n
+
b
1
X
2
n
−
1
+
⋯
+
b
n
−
1
X
n
+
1
+
⋯
+
b
2
n
,
then
P
2
(
1
)
≥
2
b
n
−
1
.
P^2(1)\geq 2b_{n-1}.
P
2
(
1
)
≥
2
b
n
−
1
.
Back to Problems
View on AoPS