MathDB
Problems
Contests
Undergraduate contests
Vojtěch Jarník IMC
2015 VJIMC
3
VJIMC 2015 Category II, Problem 3
VJIMC 2015 Category II, Problem 3
Source: VJIMC2015
August 10, 2015
Summation
Convergence
infinite sum
college contests
real analysis
Problem Statement
Problem 3 Determine the set of real values of
x
x
x
for which the following series converges, and find its sum:
∑
n
=
1
∞
(
∑
k
1
,
k
2
,
…
,
k
n
≥
0
1
⋅
k
1
+
2
⋅
k
2
+
…
+
n
⋅
k
n
=
n
(
k
1
+
…
+
k
n
)
!
k
1
!
⋅
…
⋅
k
n
!
x
k
1
+
…
+
k
n
)
.
\sum_{n=1}^{\infty} \left(\sum_{\substack{k_1, k_2,\ldots , k_n \geq 0\\ 1\cdot k_1 + 2\cdot k_2+\ldots +n\cdot k_n = n}} \frac{(k_1+\ldots+k_n)!}{k_1!\cdot \ldots \cdot k_n!} x^{k_1+\ldots +k_n} \right) \ .
n
=
1
∑
∞
k
1
,
k
2
,
…
,
k
n
≥
0
1
⋅
k
1
+
2
⋅
k
2
+
…
+
n
⋅
k
n
=
n
∑
k
1
!
⋅
…
⋅
k
n
!
(
k
1
+
…
+
k
n
)!
x
k
1
+
…
+
k
n
.
Back to Problems
View on AoPS