MathDB
VJIMC 2015 Category II, Problem 3

Source: VJIMC2015

August 10, 2015
SummationConvergenceinfinite sumcollege contestsreal analysis

Problem Statement

Problem 3 Determine the set of real values of xx for which the following series converges, and find its sum: n=1(k1,k2,,kn01k1+2k2++nkn=n(k1++kn)!k1!kn!xk1++kn) .\sum_{n=1}^{\infty} \left(\sum_{\substack{k_1, k_2,\ldots , k_n \geq 0\\ 1\cdot k_1 + 2\cdot k_2+\ldots +n\cdot k_n = n}} \frac{(k_1+\ldots+k_n)!}{k_1!\cdot \ldots \cdot k_n!} x^{k_1+\ldots +k_n} \right) \ .