MathDB
functional equation f(x+y)=f(x)f(a-y)+f(y)f(a-x) - show f is constant

Source: bmo 1987

April 23, 2007
function

Problem Statement

Let aa be a real number and let f:RRf : \mathbb{R}\rightarrow \mathbb{R} be a function satisfying f(0)=12f(0)=\frac{1}{2} and f(x+y)=f(x)f(a-y)+f(y)f(a-x),   \forall x,y \in \mathbb{R}. Prove that ff is constant.