MathDB
Iberoamerican Olympiad 2014, Problem 6

Source:

September 25, 2014
functionalgorithminductioninequalitiesnumber theory unsolvednumber theory

Problem Statement

Given a set XX and a function f:XXf: X \rightarrow X, for each xXx \in X we define f1(x)=f(x)f^1(x)=f(x) and, for each j1j \ge 1, fj+1(x)=f(fj(x))f^{j+1}(x)=f(f^j(x)). We say that aXa \in X is a fixed point of ff if f(a)=af(a)=a. For each xRx \in \mathbb{R}, let π(x)\pi (x) be the quantity of positive primes lesser or equal to xx.
Given an positive integer nn, we say that f:{1,2,,n}{1,2,,n}f: \{1,2, \dots, n\} \rightarrow \{1,2, \dots, n\} is catracha if ff(k)(k)=kf^{f(k)}(k)=k, for every k=1,2,nk=1, 2, \dots n. Prove that:
(a) If ff is catracha, ff has at least π(n)π(n)+1\pi (n) -\pi (\sqrt{n}) +1 fixed points. (b) If n36n \ge 36, there exists a catracha function ff with exactly π(n)π(n)+1 \pi (n) -\pi (\sqrt{n}) + 1 fixed points.