MathDB
Putnam 2008 A1

Source:

December 8, 2008
Putnamfunctionabstract algebracalculuslimitintegrationalgebra

Problem Statement

Let f:R2R f: \mathbb{R}^2\to\mathbb{R} be a function such that f(x,y)\plus{}f(y,z)\plus{}f(z,x)\equal{}0 for real numbers x,y, x,y, and z. z. Prove that there exists a function g:RR g: \mathbb{R}\to\mathbb{R} such that f(x,y)\equal{}g(x)\minus{}g(y) for all real numbers x x and y. y.