MathDB
Find the length of AB

Source: 1970 AHSME Problem 9

March 21, 2014
ratioAMC

Problem Statement

Points PP and QQ are on line segment ABAB, and both points are on the same side of the midpoint of ABAB. Point PP divides ABAB in the ratio 2:32:3 and QQ divides ABAB in the ratio 3:43:4. If PQ=2PQ=2, then the length of segment ABAB is
<spanclass=latexbold>(A)</span>12<spanclass=latexbold>(B)</span>28<spanclass=latexbold>(C)</span>70<spanclass=latexbold>(D)</span>75<spanclass=latexbold>(E)</span>105<span class='latex-bold'>(A) </span>12\qquad<span class='latex-bold'>(B) </span>28\qquad<span class='latex-bold'>(C) </span>70\qquad<span class='latex-bold'>(D) </span>75\qquad <span class='latex-bold'>(E) </span>105