MathDB
Problems
Contests
Undergraduate contests
Putnam
2011 Putnam
B6
Putnam 2011 B6
Putnam 2011 B6
Source:
December 5, 2011
Putnam
algebra
polynomial
college contests
Problem Statement
Let
p
p
p
be an odd prime. Show that for at least
(
p
+
1
)
/
2
(p+1)/2
(
p
+
1
)
/2
values of
n
n
n
in
{
0
,
1
,
2
,
…
,
p
−
1
}
,
\{0,1,2,\dots,p-1\},
{
0
,
1
,
2
,
…
,
p
−
1
}
,
\sum_{k=0}^{p-1}k!n^k \text{is not divisible by }p.
Back to Problems
View on AoPS