MathDB
2019 Serbia MO Day 2 P6

Source: 2019 Serbia MO

April 7, 2019
algebraSequence

Problem Statement

Sequences (an)n=0(a_n)_{n=0}^{\infty} and (bn)n=0(b_n)_{n=0}^{\infty} are defined with recurrent relations : a0=0,      a1=1,        an+1=2018nan+an1      for       n1a_0=0 , \;\;\; a_1=1, \;\;\;\; a_{n+1}=\frac{2018}{n} a_n+ a_{n-1}\;\;\; \text {for }\;\;\; n\geq 1 and b0=0,      b1=1,        bn+1=2020nbn+bn1      for       n1b_0=0 , \;\;\; b_1=1, \;\;\;\; b_{n+1}=\frac{2020}{n} b_n+ b_{n-1}\;\;\; \text {for }\;\;\; n\geq 1 Prove that :a10101010=b10091009\frac{a_{1010}}{1010}=\frac{b_{1009}}{1009}