MathDB
cyclic inequality with fractions

Source: Problem 2, Polish NO 1990

September 30, 2005
inequalitiesinequalities unsolved

Problem Statement

Let x1,x2,...,xnx_1, x_2, . . . , x_n be positive numbers. Prove that i=1nxi2xi2+xi+1xi+2n1 \sum\limits_{i=1}^n \dfrac{x_i ^2}{x_i ^2+x_{i+1}x_{i+2}} \leq n-1 Where xn+1=x1x_{n+1}=x_1 and xn+2=x2x_{n+2}=x_2.