If A=(a1,⋯,an) , B=(b1,⋯,bn) be 2n−tuple that ai,bi=0or1 for i=1,2,⋯,n, we define f(A,B) the number of 1≤i≤n that ai=bi.
For instance, if A=(0,1,1) , B=(1,1,0), then f(A,B)=2.
Now, let A=(a1,⋯,an) , B=(b1,⋯,bn) , C=(c1,⋯,cn) be 3 n−tuple, such that for i=1,2,⋯,n, ai,bi,ci=0or1 and f(A,B)=f(A,C)=f(B,C)=d.
a) Prove that d is even.
b) Prove that there exists a n−tuple D=(d1,⋯,dn) that di=0or1 for i=1,2,⋯,n, such that f(A,D)=f(B,D)=f(C,D)=2d.