MathDB
Problems
Contests
National and Regional Contests
Bulgaria Contests
Bulgaria National Olympiad
1999 Bulgaria National Olympiad
2
Bulgaria 1999 Sequence Problem
Bulgaria 1999 Sequence Problem
Source:
November 14, 2012
modular arithmetic
number theory unsolved
number theory
Problem Statement
Let
{
a
n
}
\{a_n\}
{
a
n
}
be a sequence of integers satisfying
(
n
−
1
)
a
n
+
1
=
(
n
+
1
)
a
n
−
2
(
n
−
1
)
∀
n
≥
1
(n-1)a_{n+1}=(n+1)a_n-2(n-1) \forall n\ge 1
(
n
−
1
)
a
n
+
1
=
(
n
+
1
)
a
n
−
2
(
n
−
1
)
∀
n
≥
1
. If
2000
∣
a
1999
2000|a_{1999}
2000∣
a
1999
, find the smallest
n
≥
2
n\ge 2
n
≥
2
such that
2000
∣
a
n
2000|a_n
2000∣
a
n
.
Back to Problems
View on AoPS