MathDB
Bulgaria 1999 Sequence Problem

Source:

November 14, 2012
modular arithmeticnumber theory unsolvednumber theory

Problem Statement

Let {an}\{a_n\} be a sequence of integers satisfying (n1)an+1=(n+1)an2(n1)n1(n-1)a_{n+1}=(n+1)a_n-2(n-1) \forall n\ge 1. If 2000a19992000|a_{1999}, find the smallest n2n\ge 2 such that 2000an2000|a_n.