MathDB
Romanian District Olympiad 2019 - Grade 11 - Problem 2

Source: Romanian District Olympiad 2019 - Grade 11 - Problem 2

March 16, 2019
characteristic polynomialInequalityDeterminantslinear algebra

Problem Statement

Let nN,n2,n \in \mathbb{N},n \ge 2, and A,BMn(R).A,B \in \mathcal{M}_n(\mathbb{R}). Prove that there exists a complex number z,z, such that z=1|z|=1 and (det(A+zB))det(A)+det(B),\Re \left( {\det(A+zB)} \right) \ge \det(A)+\det(B), where (w)\Re(w) is the real part of the complex number w.w.