MathDB
Metric relation describing the position of the incenter

Source: Romanian IMO TST 2006, day 5, problem 4

May 23, 2006
geometryincentercircumcircleparallelogramtrigonometrygeometry proposed

Problem Statement

Let ABCABC be an acute triangle with ABACAB \neq AC. Let DD be the foot of the altitude from AA and ω\omega the circumcircle of the triangle. Let ω1\omega_1 be the circle tangent to ADAD, BDBD and ω\omega. Let ω2\omega_2 be the circle tangent to ADAD, CDCD and ω\omega. Let \ell be the interior common tangent to both ω1\omega_1 and ω2\omega_2, different from ADAD.
Prove that \ell passes through the midpoint of BCBC if and only if 2BC=AB+AC2BC = AB + AC.