MathDB
Spheres in a Box

Source: 2014 AMC 12A #17

February 5, 2014
geometry3D geometryspherepyramidPythagorean TheoremAMC

Problem Statement

A 4×4×h4\times 4\times h rectangular box contains a sphere of radius 22 and eight smaller spheres of radius 11. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is hh?
[asy] import graph3; import solids; real h=2+2*sqrt(7); currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2)); currentlight=light(4,-4,4); draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0)); draw(shift((1,3,1))*unitsphere,gray(0.85)); draw(shift((3,3,1))*unitsphere,gray(0.85)); draw(shift((3,1,1))*unitsphere,gray(0.85)); draw(shift((1,1,1))*unitsphere,gray(0.85)); draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,gray(0.85)); draw(shift((1,3,h-1))*unitsphere,gray(0.85)); draw(shift((3,3,h-1))*unitsphere,gray(0.85)); draw(shift((3,1,h-1))*unitsphere,gray(0.85)); draw(shift((1,1,h-1))*unitsphere,gray(0.85)); draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h)); [/asy]
<spanclass=latexbold>(A)</span>2+27<spanclass=latexbold>(B)</span>3+25<spanclass=latexbold>(C)</span>4+27<spanclass=latexbold>(D)</span>45<spanclass=latexbold>(E)</span>47<span class='latex-bold'>(A) </span>2+2\sqrt 7\qquad <span class='latex-bold'>(B) </span>3+2\sqrt 5\qquad <span class='latex-bold'>(C) </span>4+2\sqrt 7\qquad <span class='latex-bold'>(D) </span>4\sqrt 5\qquad <span class='latex-bold'>(E) </span>4\sqrt 7\qquad