MathDB
functional equation on reals with y-x

Source: MEMO 2016 T2

August 25, 2016
algebrafunctional equationalgebra proposed

Problem Statement

Let R\mathbb{R} denote the set of the reals. Find all f:RRf : \mathbb{R} \to \mathbb{R} such that f(x)f(y)=xf(f(yx))+xf(2x)+f(x2) f(x)f(y) = xf(f(y-x)) + xf(2x) + f(x^2) for all real x,yx, y.