MathDB
Equiangular Hexagons

Source: 2015 AMC 8 #21

November 25, 2015
AMC 8geometry

Problem Statement

In the given figure hexagon ABCDEFABCDEF is equiangular, ABJIABJI and FEHGFEHG are squares with areas 1818 and 3232 respectively, JBK\triangle JBK is equilateral and FE=BCFE=BC. What is the area of KBC\triangle KBC?
<spanclass=latexbold>(A)</span>62<spanclass=latexbold>(B)</span>9<spanclass=latexbold>(C)</span>12<spanclass=latexbold>(D)</span>92<spanclass=latexbold>(E)</span>32<span class='latex-bold'>(A) </span>6\sqrt{2}\qquad<span class='latex-bold'>(B) </span>9\qquad<span class='latex-bold'>(C) </span>12\qquad<span class='latex-bold'>(D) </span>9\sqrt{2}\qquad<span class='latex-bold'>(E) </span>32
[asy] draw((-4,6*sqrt(2))--(4,6*sqrt(2))); draw((-4,-6*sqrt(2))--(4,-6*sqrt(2))); draw((-8,0)--(-4,6*sqrt(2))); draw((-8,0)--(-4,-6*sqrt(2))); draw((4,6*sqrt(2))--(8,0)); draw((8,0)--(4,-6*sqrt(2))); draw((-4,6*sqrt(2))--(4,6*sqrt(2))--(4,8+6*sqrt(2))--(-4,8+6*sqrt(2))--cycle); draw((-8,0)--(-4,-6*sqrt(2))--(-4-6*sqrt(2),-4-6*sqrt(2))--(-8-6*sqrt(2),-4)--cycle); label("II",(-4,8+6*sqrt(2)),dir(100)); label("JJ",(4,8+6*sqrt(2)),dir(80)); label("AA",(-4,6*sqrt(2)),dir(280)); label("BB",(4,6*sqrt(2)),dir(250)); label("CC",(8,0),W); label("DD",(4,-6*sqrt(2)),NW); label("EE",(-4,-6*sqrt(2)),NE); label("FF",(-8,0),E); draw((4,8+6*sqrt(2))--(4,6*sqrt(2))--(4+4*sqrt(3),4+6*sqrt(2))--cycle); label("KK",(4+4*sqrt(3),4+6*sqrt(2)),E); draw((4+4*sqrt(3),4+6*sqrt(2))--(8,0),dashed); label("HH",(-4-6*sqrt(2),-4-6*sqrt(2)),S); label("GG",(-8-6*sqrt(2),-4),W); label("3232",(-10,-8),N); label("1818",(0,6*sqrt(2)+2),N); [/asy]