a) Consider the positive integers a,b,c so that a<b<c and a2+b2=c2. If a1=a2, a2=ab, a3=bc, a4=c2, prove that a12+a22+a32=a42 and a1<a2<a3<a4.b) Show that for any n∈N, n≥3, there exist the positive integers a1,a2,...,an so that a12+a22+...+an−12=an2 and a1<a2<...<an−1<an