MathDB
Function on the power set

Source: RMO 2006, 10th grade

April 17, 2006
functioninductionalgebra proposedalgebra

Problem Statement

Let M\displaystyle M be a set composed of n\displaystyle n elements and let P(M)\displaystyle \mathcal P (M) be its power set. Find all functions f:P(M){0,1,2,,n}\displaystyle f : \mathcal P (M) \to \{ 0,1,2,\ldots,n \} that have the properties (a) f(A)0\displaystyle f(A) \neq 0, for Aϕ\displaystyle A \neq \phi; (b) f(AB)=f(AB)+f(AΔB)\displaystyle f \left( A \cup B \right) = f \left( A \cap B \right) + f \left( A \Delta B \right), for all A,BP(M)\displaystyle A,B \in \mathcal P (M), where AΔB=(AB)\(AB)\displaystyle A \Delta B = \left( A \cup B \right) \backslash \left( A \cap B \right).