MathDB
Miklós Schweitzer 1984- Problem 5

Source:

September 4, 2016
college contests

Problem Statement

5. Let a0,a1,a_0 , a_1 , \dots be nonnegative real numbers such that
n=0an=\sum_{n=0}^{\infty}a_n = \infty
For arbitrary c>0 c>0, let
nj(c)=min{k:c.ji=0kai}n_{j}(c)= \min \left \{ k : c.j \leq \sum_{i=0}^{k} a_i \right \}, j=1,2,j= 1,2, \dots
Prove that if i=0ai2=\sum_{i=0}^{\infty}a_i^2 = \infty, then there exists a c>0c>0 for which j=1anj(c)=\sum_{j=1}^{\infty} a_{n_j (c)} = \infty .(S.24) [P. Erdos, I. Joó, L. Székely]