MathDB
Intersting inequality

Source: Moldova TST 2018

April 6, 2018
inequalities

Problem Statement

The positive real numbers a,b,c,da,b, c,d satisfy the equality 1a+1+1b+1+1c+1+1d+1=3 \frac {1}{a+1} + \frac {1}{b+1} + \frac {1}{c+1} + \frac{ 1}{d+1} = 3 . Prove the inequality abc3+bcd3+cda3+dab343\sqrt [3]{abc} + \sqrt [3]{bcd} + \sqrt [3]{cda} + \sqrt [3]{dab} \le \frac {4}{3} .