MathDB
Problems
Contests
Undergraduate contests
Putnam
1961 Putnam
B1
Putnam 1961 B1
Putnam 1961 B1
Source: Putnam 1961
June 5, 2022
Putnam
limit
inequalities
Problem Statement
Let
a
1
,
a
2
,
a
3
,
…
a_1 , a_2 , a_3 ,\ldots
a
1
,
a
2
,
a
3
,
…
be a sequence of positive real numbers, define
s
n
=
a
1
+
a
2
+
…
+
a
n
n
s_n = \frac{a_1 +a_2 +\ldots+a_n }{n}
s
n
=
n
a
1
+
a
2
+
…
+
a
n
and
r
n
=
a
1
−
1
+
a
2
−
1
+
…
+
a
n
−
1
n
.
r_n = \frac{a_{1}^{-1} +a_{2}^{-1} +\ldots+a_{n}^{-1} }{n}.
r
n
=
n
a
1
−
1
+
a
2
−
1
+
…
+
a
n
−
1
.
Given that
lim
n
→
∞
s
n
\lim_{n\to \infty} s_n
lim
n
→
∞
s
n
and
lim
n
→
∞
r
n
\lim_{n\to \infty} r_n
lim
n
→
∞
r
n
exist, prove that the product of these limits is not less than
1.
1.
1.
Back to Problems
View on AoPS