MathDB
Putnam 1961 B1

Source: Putnam 1961

June 5, 2022
Putnamlimitinequalities

Problem Statement

Let a1,a2,a3,a_1 , a_2 , a_3 ,\ldots be a sequence of positive real numbers, define sn=a1+a2++anns_n = \frac{a_1 +a_2 +\ldots+a_n }{n} and rn=a11+a21++an1n.r_n = \frac{a_{1}^{-1} +a_{2}^{-1} +\ldots+a_{n}^{-1} }{n}. Given that limnsn\lim_{n\to \infty} s_n and limnrn\lim_{n\to \infty} r_n exist, prove that the product of these limits is not less than 1.1.