MathDB
Problems
Contests
Undergraduate contests
Putnam
1961 Putnam
B4
Putnam 1961 B4
Putnam 1961 B4
Source: Putnam 1961
June 5, 2022
Putnam
absolute value
inequalities
Problem Statement
Let
x
1
,
x
2
,
…
,
x
n
x_1 , x_2 ,\ldots, x_n
x
1
,
x
2
,
…
,
x
n
be real numbers in
[
0
,
1
]
.
[0,1].
[
0
,
1
]
.
Determine the maximum value of the sum of the
n
(
n
−
1
)
2
\frac{n(n-1)}{2}
2
n
(
n
−
1
)
terms:
∑
i
<
j
∣
x
i
−
x
j
∣
.
\sum_{i<j}|x_i -x_j |.
i
<
j
∑
∣
x
i
−
x
j
∣.
Back to Problems
View on AoPS