Let ABC be a triangle with m(∠C)=90∘ and the points D∈[AC],E∈[BC]. Inside the triangle we construct the semicircles C1,C2,C3,C4 of diameters [AC],[BC],[CD],[CE] and let {C,K}=C1∩C2,{C,M}=C3∩C4,{C,L}=C2∩C3,{C,N}=C1∩C4. Show that points K,L,M,N are concyclic.