Let n be a positive integer and a1,...,an be positive real numbers.
Let g(x) denote the product (x+a1)⋅...⋅(x+an) .
Let a0 be a real number and let
f(x)=(x−a0)g(x)=xn+1+b1xn+b2xn−1+...+bnx+bn+1 .
Prove that all the coeffcients b1,b2,...,bn+1 of the polynomial f(x) are negative if and only if a0>a1+a2+...+an.