MathDB
sum a_k (k!)^{2010}= (2011 !)^{2010}

Source: 2011 Saudi Arabia Pre-TST February 4.2

January 1, 2022
number theoryfactorial

Problem Statement

Find positive integers a1<a2<...<a2010a_1 < a_2<... <a_{2010} such that a1(1!)2010+a2(2!)2010+...+a2010(2010!)2010=(2011!)2010.a_1(1!)^{2010} + a_2(2!)^{2010} + ... + a_{2010}(2010!)^{2010} = (2011 !)^{2010}.