MathDB
Triangular cupola volume

Source: 2014 SDMO Middle School Problem 5

August 28, 2016

Problem Statement

Below is a net consisting of 33 squares, 44 equilateral triangles, and 11 regular hexagon. Each polygon has side length 11. When we fold this net to form a polyhedron, what is the volume of the polyhedron? (This figure is called a "triangular cupola".)
Net:
[asy] pair A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P; A = origin; B = (0,3); C = 3*dir(150); D = (0,1); E = (0,2); F = C+2*dir(30); G = C+dir(30); H = 2*dir(150); I = dir(150); J = (1,1); K = J+dir(30); L = (1,2); M = F+dir(120); N = G+dir(120); O = H+dir(240); P = I+dir(240); draw(A--B--C--cycle); draw(D--E--F--G--H--I--cycle); draw(D--E--L--J--cycle); draw(F--G--N--M--cycle); draw(H--I--P--O--cycle); draw(J--K--L--cycle); [/asy]
Resulting polyhedron:
https://upload.wikimedia.org/wikipedia/commons/9/93/Triangular_cupola.png