MathDB
Cute construction problem

Source: Latvian TST 2021 Day 1 P2

March 12, 2021
combinatorics

Problem Statement

Prove it is possible to find 220212^{2021} different pairs of positive integers (ai,bi)(a_i,b_i) such that: 1aibi+1a2b2++1a22021b22021=1 \frac{1}{a_ib_i}+\frac{1}{a_2b_2} + \ldots + \frac{1}{a_{2^{2021}}b_{2^{2021}}} = 1 a1+a2+a22021+b1+b2++b22021=32022 a_1+a_2 +\ldots a_{2^{2021}} +b_1+b_2 + \ldots +b_{2^{2021}} = 3^{2022} Note: Pairs (a,b)(a,b) and (c,d)(c,d) are different if aca \neq c or bdb \neq d