MathDB
Toothpick Triangles

Source:

January 3, 2009
algebrapolynomial

Problem Statement

A large equilateral triangle is constructed by using toothpicks to create rows of small equilateral triangles. For example, in the figure we have 3 3 rows of small congruent equilateral triangles, with 5 5 small triangles in the base row. How many toothpicks would be needed to construct a large equilateral triangle if the base row of the triangle consists of 2003 2003 small equilateral triangles? [asy]unitsize(15mm); defaultpen(linewidth(.8pt)+fontsize(8pt));
pair Ap=(0,0), Bp=(1,0), Cp=(2,0), Dp=(3,0), Gp=dir(60); pair Fp=shift(Gp)*Bp, Ep=shift(Gp)*Cp; pair Hp=shift(Gp)*Gp, Ip=shift(Gp)*Fp; pair Jp=shift(Gp)*Hp; pair[] points={Ap,Bp,Cp,Dp,Ep,Fp,Gp,Hp,Ip,Jp};
draw(Ap--Dp--Jp--cycle); draw(Gp--Bp--Ip--Hp--Cp--Ep--cycle);
for(pair p : points) { fill(circle(p, 0.07),white); }
pair[] Cn=new pair[5]; Cn[0]=centroid(Ap,Bp,Gp); Cn[1]=centroid(Gp,Bp,Fp); Cn[2]=centroid(Bp,Fp,Cp); Cn[3]=centroid(Cp,Fp,Ep); Cn[4]=centroid(Cp,Ep,Dp); label("11",Cn[0]); label("22",Cn[1]); label("33",Cn[2]); label("44",Cn[3]); label("55",Cn[4]); for (pair p : Cn) { draw(circle(p,0.1)); }[/asy] <spanclass=latexbold>(A)</span> 1, ⁣004, ⁣004<spanclass=latexbold>(B)</span> 1, ⁣005, ⁣006<spanclass=latexbold>(C)</span> 1, ⁣507, ⁣509<spanclass=latexbold>(D)</span> 3, ⁣015, ⁣018<spanclass=latexbold>(E)</span> 6, ⁣021, ⁣018 <span class='latex-bold'>(A)</span>\ 1,\!004,\!004 \qquad <span class='latex-bold'>(B)</span>\ 1,\!005,\!006 \qquad <span class='latex-bold'>(C)</span>\ 1,\!507,\!509 \qquad <span class='latex-bold'>(D)</span>\ 3,\!015,\!018 \qquad <span class='latex-bold'>(E)</span>\ 6,\!021,\!018