Let n be an odd integer and m=ϕ(n) be the Euler's totient function. Call a set of residues T={a1,⋯,ak}(modn) to be good if gcd(ai,n)>1∀i, and gcd(ai,aj)=1,∀i=j. Define the set Sn consisting of the residues i=1∑kaim(modn) over all possible residue sets T={a1,⋯,ak} that is good. Determine ∣Sn∣.Proposed by Anzo Teh Zhao Yang