MathDB
Good residue sets

Source: Malaysian IMO TST 2024 P5

April 21, 2024
number theory

Problem Statement

Let nn be an odd integer and m=ϕ(n)m=\phi(n) be the Euler's totient function. Call a set of residues T={a1,,ak}(modn)T=\{a_1, \cdots, a_k\} \pmod n to be good if gcd(ai,n)>1\gcd(a_i, n) > 1 i\forall i, and gcd(ai,aj)=1,ij\gcd(a_i, a_j) = 1, \forall i \neq j. Define the set SnS_n consisting of the residues i=1kaim(modn)\sum_{i=1}^k a_i ^m\pmod{n} over all possible residue sets T={a1,,ak}T=\{a_1,\cdots,a_k\} that is good. Determine Sn|S_n|.
Proposed by Anzo Teh Zhao Yang