Interval I=(0,1] - ISL 1976
Source:
September 20, 2010
floor functionfunctionalgebraIterationintervalIMO Shortlist
Problem Statement
Let be the unit interval of the real line. For a given number we define a map by the formula
if
T (x, y) = \begin{cases} x + (1 - a),&\mbox{ if } 0< x \leq a,\\ \text{ } \\ x - a, & \mbox{ if } a < x \leq 1.\end{cases} Show that for every interval there exists an integer such that