MathDB
Serbian TST 2015

Source:

May 25, 2015
number theory

Problem Statement

For integer aa, a0a \neq 0, v2(a)v_2(a) is greatest nonnegative integer kk such that 2ka2^k | a. For given nNn \in \mathbb{N} determine highest possible cardinality of subset AA of set {1,2,3,...,2n} \{1,2,3,...,2^n \} with following property: For all x,yAx, y \in A, xyx \neq y, number v2(xy)v_2(x-y) is even.