MathDB
Miklós Schweitzer 1984- Problem 10

Source:

September 5, 2016
college contests

Problem Statement

10. Let X1,X2,X_1, X_2, \dots be independent random variables with the same distribution
P(Xi=1)=P(Xi=1)=12(i=1,2,)P(X_i = 1) = P(X_i = -1)=\frac{1}{2}\qquad (i= 1, 2, \dots )
Define
S0=0,Sn=X1+X2++Xn(n=1,2,S_0=0, Sn=X_1 +X_2+\dots +X_n \qquad (n=1, 2, \dots ),
ξ(x,n)={k:0kn,Sk=x}(x=0,±1,±2,\xi (x,n) = \left | \{k : 0 \leq k \leq n, S_k= x \} \right |\qquad (x=0, \pm 1, \pm 2, \dots ),
and
α(n)={x:ξ(x,n)=a}(n=0,1,\alpha(n)= \left | \{ x: \xi(x,n)=a \} \right |\qquad (n=0,1,\dots).
Prove that
P(liminfα(n)=0)=1P(\lim \inf \alpha(n)=0) =1
and that there is a number 0<c<0<c<\infty such that P(liminfα(n)/logn=c)=1P(\lim \inf \alpha(n)/\log n=c) =1 (P.24) [P. Révész]