10. Let X1,X2,… be independent random variables with the same distribution P(Xi=1)=P(Xi=−1)=21(i=1,2,…)DefineS0=0,Sn=X1+X2+⋯+Xn(n=1,2,… ),ξ(x,n)=∣{k:0≤k≤n,Sk=x}∣(x=0,±1,±2,…),andα(n)=∣{x:ξ(x,n)=a}∣(n=0,1,…).Prove that P(liminfα(n)=0)=1and that there is a number 0<c<∞ such that P(liminfα(n)/logn=c)=1
(P.24)
[P. Révész]