MathDB
Prove that P(x,y)=P(y,x)

Source: Bulgaria 1998 (round 4)

September 24, 2013
algebrapolynomialalgebra unsolved

Problem Statement

The polynomials Pn(x,y),n=1,2,...P_n(x,y), n=1,2,... are defined by P1(x,y)=1,Pn+1(x,y)=(x+y1)(y+1)Pn(x,y+2)+(yy2)Pn(x,y)P_1(x,y)=1, P_{n+1}(x,y)=(x+y-1)(y+1)P_n(x,y+2)+(y-y^2)P_n(x,y) Prove that Pn(x,y)=Pn(y,x)P_{n}(x,y)=P_{n}(y,x) for all x,yRx,y \in \mathbb{R} and nn .