MathDB
Problems
Contests
National and Regional Contests
North Macedonia Contests
Macedonia National Olympiad
2017 Macedonia National Olympiad
Problem 2
Macedonia National Olympiad 2017 Problem 2
Macedonia National Olympiad 2017 Problem 2
Source: Macedonia National Olympiad 2017
April 8, 2017
number theory
algebra
Problem Statement
Find all natural integers
n
n
n
such that
(
n
3
+
39
n
−
2
)
n
!
+
17
⋅
2
1
n
+
5
(n^3 + 39n - 2)n! + 17\cdot 21^n + 5
(
n
3
+
39
n
−
2
)
n
!
+
17
⋅
2
1
n
+
5
is a square.
Back to Problems
View on AoPS