MathDB
Ineq from Abel competition 2020-2021

Source: Abel Math Competition 2020-2021 Problem 2 part (b)

May 27, 2021
abelinequalitiesalgebra

Problem Statement

If a1,,ana_1,\cdots,a_n and b1,,bnb_1,\cdots,b_n are real numbers satisfying a12++an21a_1^2+\cdots+a_n^2 \le 1 and b12++bn21b_1^2+\cdots+b_n^2 \le 1 , show that: (1(a12++an2))(1(b12++bn2))(1(a1b1++anbn))2(1-(a_1^2+\cdots+a_n^2))(1-(b_1^2+\cdots+b_n^2)) \le (1-(a_1b_1+\cdots+a_nb_n))^2