MathDB
2022 PUMaC Team #3

Source:

September 9, 2023
algebra

Problem Statement

Provided that {ai}i=128\{a_i\}^{28}_{i=1} are the 2828 distinct roots of 29x28+28x27+...+2x+1=029x^{28} + 28x^{27} + ... + 2x + 1 = 0, then the absolute value of i=1281(1ai)2\sum^{28}_{i=1}\frac{1}{(1-a_i)^2} can be written as pq\frac{p}{q} for relatively prime positive integers p,qp, q. Find p+qp + q.