MathDB
Meanest AMC 12 #13 Ever In The History of AMC 12s

Source: 2018 AMC 12B #13

February 16, 2018
AMCAMC 12AMC 12 B2018 AMC 12B2018 AMC

Problem Statement

Square ABCDABCD has side length 3030. Point PP lies inside the square so that AP=12AP = 12 and BP=26BP = 26. The centroids of ABP\triangle{ABP}, BCP\triangle{BCP}, CDP\triangle{CDP}, and DAP\triangle{DAP} are the vertices of a convex quadrilateral. What is the area of that quadrilateral?
[asy] unitsize(120); pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3); draw(A--B--C--D--cycle); dot(P); defaultpen(fontsize(10pt)); draw(A--P--B); draw(C--P--D); label("AA", A, W); label("BB", B, W); label("CC", C, E); label("DD", D, E); label("PP", P, N*1.5+E*0.5); dot(A); dot(B); dot(C); dot(D); [/asy]
<spanclass=latexbold>(A)</span>1002<spanclass=latexbold>(B)</span>1003<spanclass=latexbold>(C)</span>200<spanclass=latexbold>(D)</span>2002<spanclass=latexbold>(E)</span>2003<span class='latex-bold'>(A) </span>100\sqrt{2}\qquad<span class='latex-bold'>(B) </span>100\sqrt{3}\qquad<span class='latex-bold'>(C) </span>200\qquad<span class='latex-bold'>(D) </span>200\sqrt{2}\qquad<span class='latex-bold'>(E) </span>200\sqrt{3}